
Radiation damping of a quantum particle with a spin magnetic moment

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys. A: Math. Gen. 30 1135

(http://iopscience.iop.org/0305-4470/30/4/015)

Download details:

IP Address: 171.66.16.112

The article was downloaded on 02/06/2010 at 06:12

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/4
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.30 (1997) 1135–1141. Printed in the UK PII: S0305-4470(97)75937-7

Radiation damping of a quantum particle with a spin
magnetic moment

Anatoly Yu Smirnov
Radiophysics Department, N Lobachevsky State University, Gagarin avenue 23, 603600 Nizhny
Novgorod, Russia

Received 25 June 1996, in final form 7 October 1996

Abstract. It is shown that a quantum non-relativistic particle experiences a radiation friction
force due to the interaction of its spin magnetic moment with a blackbody radiation thermal
bath. The effect of spin precession in an external magnetic field on deceleration of the particle
is considered.

1. Introduction

It is common knowledge that a charged particle is subjected to the force of radiation reaction
[1–3]

Fe = 2e2

3c3

d3r

dt3
. (1)

The quantum version of this force has been obtained in [4, 5]. A neutral non-relativistic
particle with a spin magnetic momentµ, say, a neutron, also couples to a quantized
electromagnetic field with a vector potentialA(r, t). The motion of the particle therewith
can be observed in a frame of reference in which the particle’s velocity is far less than the
velocity of light. Then the interaction of the neutral particle with the electric component
E(r, t) = (−1/c)Ȧ(r, t) of the blackbody radiation field [6]

V̂E = µ ·
(
p×E(r, t)

mc

)
is much less than the interaction of the magnetic momentµ = gµ0σ with the magnetic
componentB(r, t) = rotA(r, t):

V̂B = −µ ·B(r, t) = −gµ0L
−3/2

∑
k

(Bk(t) · σ(t)) eik·r(t). (2)

As a consequence the neutral non-relativistic particle should experience the magnetic
force Fµ(t) = ∇(µ · B(r, t)). Here p is the canonical momentum of the particle,
σ = {σi}(i = 1, 2, 3) is the set of Pauli matrices,L is the linear size of the system, andBk(t)

are the space harmonics of the fluctuating magnetic fieldB(r, t). It should be noted that
the forthcoming quantum derivation is restricted to spin-1

2 particles, so that all Heisenberg
unaveraged variablesBk(t), r(t), . . . are (2× 2) matrices. The angular brackets〈. . .〉 will
denote thereafter an ensemble average over the initial state of the blackbody radiation heat
bath with a temperatureT (the Boltzmann constantkB = 1) in combination with the trace
over spins. For a neutron theg-factorg and the magnetonµ0 areg = −1.9, µ0 = eh̄/2mpc
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with mp being the proton mass, whereas for an electrong = 1 andµ0 = eh̄/2m0c with m0

being the electron mass.
The aim of this paper is to show that the interaction of a magnetic moment with a

blackbody radiation field gives rise to a frictional forceFµ(t) decelerating the motion of a
neutral particle with a spin magnetic moment in a photon thermal bath. The usual radiation
reaction force (1) is determined by the uniform self-interaction electric fieldE(t), whereas
the inhomogeneous blackbody radiation magnetic fieldB(r, t) can only give rise to the
magnetic friction. As a result, the forceFµ(t) is found (see equation (17) later) to have
more than three time derivatives provided the magnetic moment is kept constant:

Fµ(t) = −2(gµ0)
2

3c5

d5r

dt5
. (3)

Generally, both the magnetic radiation reaction and blackbody field fluctuations
contribute significantly to the magnetic frictional force. Therefore, the time evolution of
the magnetic moment, say, a spin precession under the uniform magnetic fieldB0 action,
may have a pronounced effect on the magnetic frictional force, and with it on the space
motion of the particle. Then the magnetic frictional force is found (see equations (18)
and (19)) to be proportional to the particle velocityVj (t) = drj (t)/dt (j = 1, 2, 3):
(Fµ)j = −ζj (1, T )Vj (t). A force of this type brings the quantum particle to rest with
respect to a frame of blackbody radiation in contrast to the usual radiation reaction force
(1).

Here we restrict ourselves to the quantum-mechanical treatment; however, a classical
version of the forceFµ (3) can also be obtained.

Note that the radiation reaction force for classical spinning particles is particularly
considered in the work of Barut and Unal [7]. These authors find a correction to the
Lorentz–Dirac equation due to Zitterbewegung (the helical motion of the charge around the
centre of mass) which models spin; in so doing the third time derivative of the particle
position is taken into account at most. In contrast, we examine quantum spin properties
of the non-relativistic particle more rigorously and consider in some detail the frequency
dependence of the magnetic frictional force. We do not use a classical spin theory as Barut
and Unal do, but we are dealing with the agreed-upon representation of spin variables in
terms of Pauli matrices. Therefore, for a quantum non-relativistic particle our starting model
may be thought to be more correct than that of Barut and Unal, even though the ensuing
development of the paper [7] appears sufficiently rigorous.

The existence of the magnetic frictional force may be of importance for the theory
of nuclear radiation relaxation [8, 9]. In particular, this force makes a contribution to the
broadening of the excited energy levels of a neutron in an atomic nucleus due to the
interaction of the spin magnetic moment with the blackbody radiation heat bath. The
mechanism of neutron energy dissipation in question also has astrophysical applications, for
instance in the theory of neutron stars and pulsars [10].

2. Equations

The Hamiltonian of a quantum non-relativistic particle with zero electric charge, massm

and spin magnetic momentµ = gµ0σ, coupled to a blackbody radiation thermal bath and
subjected to a constantz-axially directed magnetic fieldB0 can be written in the form

Ĥ = p2

2m
+ V̂B − µ ·B0+ ĤB (4)
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with

ĤB =
∑
k,s

h̄ωk(a
+
k,sak,s + 1

2)

being the Hamiltonian of the free photon heat bath, anda+k,s , ak,s the creation–annihilation
operators of photons with a frequencyωk = ck and a wavevectork.

Fluctuations of a free blackbody radiation field are known to be Gaussian [11].
Therefore, for purposes of calculating the magnetic frictional forceFµ, it is convenient to use
the general theory of quantum dynamical systems coupled to a Gaussian thermal bath [12].
Taking into account equation (2) for the interactionV̂B , we find from the Hamiltonian (4)
that the Heisenberg operators of the coordinatesri(t) obey the equations

mr̈i(t) = gµ0L
−3/2

∑
k

ikiσj (t) eik·r(t)Bk,j (t). (5)

The total operatorBk(t) of the magnetic field

(Bk(t))j = Bk,j (t) = B(0)k,j + L−3/2
∫

dt1Djl(k, t − t1)gµ0 e−ik·r(t1)σl(t1) (6)

is comprised of unperturbed variablesB(0)k,j (t)(j, l = 1, 2, 3), descriptive of the free
blackbody radiation magnetic field as well as the magnetic field emitted by the spin magnetic
moment (‘spin light’ [13]). Here

Djl(k, t − t1) = 〈 i[B(0)k,j (t), B(0)−k,l(t1)]−〉θ(t − t1)

= 4πck

(
δjl − kj kl

k2

)
sin[ck(t − t1)]θ(t − t1) (7)

is the response function (retarded Green function) of the free quantized magnetic field [11],
θ(τ ) is the Heaviside step function and ¯h = 1.

The operators of the dynamical subsystemσj (t) eik·r(t) commute with the total
Heisenberg operatorBk,l(t) of the thermal bath. Therefore, after preliminary symmetrization
of these factors and averaging of equation (5), we get

m〈r̈i (t)〉 = (gµ0)
2
∫

d3k

(2π)3
iki

∫
dt1{M̃jl(k, t − t1)〈i[σj (t)eik·r(t), σl(t1) e−ik·r(t1)]−〉

+Djl(k, t − t1)〈 12[σj (t) eik·r(t), σl(t1) e−ik·r(t1)]+〉}. (8)

Here the standard rule of a transition from a sum to an integralL−3∑
k →

∫
d3k/(2π)3

has been used and the quantum Furutsu–Novikov theorem [12]

〈 12[Bk,j (t), σl(t) eik·r(t)]+〉
= gµ0L

−3/2
∫

dt1M̃js(k, t − t1)〈 i[σl(t) eik·r(t), σs(t1) e−ik·r(t1)]−〉 (9)

has been applied. This is possible, because the componentsB
(0)
k,j (t) of the free blackbody

radiation magnetic field are Gaussian with the correlation function [11]

Mjl(k, t − t1) = 〈 12[B(0)k,j (t), B
(0)
−k,l(t1)]−〉

= 2πck

(
δjl − kj kl

k2

)
coth

(
ck

2T

)
cos[ck(t − t1)] (10)

M̃jl(k, τ ) = Mjl(k, τ )θ(τ ).
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3. Results

The dissipative properties of the Brownian particle under study are determined by a
sufficiently weak interaction of the magnetic moment with photons having a wavelength
λ ∼ c/1, so thatkr ∼ r/λ � 1. These assumptions let us calculate the commutators
[σj (t), σl(t1)]± in the collision terms of equation (8) taking into account the free spin
precession [14]

σ1(t) = σ1(t1) cos1τ − σ2(t1) sin1τ

σ2(t) = σ1(t1) sin1τ + σ2(t1) cos1τ

σ3(t) = σ3(t1) (11)

with the frequency1 = 2|gµ0B0| > 0 in the constant magnetic fieldB0 parallel to the
z-axis, τ = t − t1.

It is easy to verify that the averaged longitudinal〈σ3(t)〉 = σz(t) and transversal
〈σ1(t)〉 = 〈σ2(t)〉 = σtr(t) projections of spin matrices relax to the thermodynamic-
equilibrium stateσ 0

z = − tanh(1/2T ) andσ 0
tr = 0, for the sufficiently short time intervals

[14, 15]

1

τz
= 2

τtr
= 8

3
(gµ0)

2

(
1

c

)3

coth

(
1

2T

)
. (12)

Our prime interest here is the time evolution of the particle space coordinatesri(t)(i =
1, 2, 3) once the thermodynamic equilibrium in the internal spin space has been established.
Taking into account equations (7), (10) and (11) and omitting the brackets〈. . .〉, equation (8)
for the averaged displacementri(t) may be re-arranged to give

r̈j (t)+ 1

m

∫
dt1G̃j (t − t1)[rj (t)− rj (t1)] = 0 (13)

with G̃j (τ ) = Gj(τ)θ(τ ) and

Gj(τ) = πc(gµ0)
2
∫

d3k

(2π)3
k2
j k

{(
1+ k

2
z

k2

)[(
1− σ 0

z coth

(
ck

2T

))
× sin(1+ ck)τ −

(
1+ σ 0

z coth

(
ck

2T

))
sin(1− ck)τ

]
+2

(
1− k

2
z

k2

)
sin(ckτ)

}
. (14)

It should be emphasized that the displacementri(t) in equation (13) is averaged not only
over thermal fluctuations, but over the spin variables as well.

In view of translational invariance, the ‘collision’ term in equation (13) depends solely
on the difference betweenrj (t) and rj (t1). This term involves not only the divergent part
(coefficients in front of the even time derivatives of the particle position) but also the finite
dissipative components (∼ d3rj (t)/dt3, etc). Like the Lorentz–Dirac equation [7], the
coefficient in front of the second time derivatives leads to mass renormalization, so that
the symbolm denotes thereafter the renormalized mass of the particle. Recall that the goal
of our work is to study divergence-free dissipative characteristics which are described by
the odd partG̃(τ )− G̃(−τ) = G(τ) of the functionG̃(τ ). As a consequence the magnetic
radiation frictional forceFµ(t) involved in the relaxation equation

mr̈j (t) = (Fµ)j =
∫

dt1Gj(t − t1)rj (t1) (15)
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does not incorporate the Heaviside step functionθ(τ ) and is determined by the Fourier
transformGj(ω) of the functionGj(τ):

Gj(ω) = i
4

15

(gµ0)
2

c5
aj

{[
1+ σ 0

z coth

(
1+ ω

2T

)]
(1+ ω)5

−
[

1+ σ 0
z coth

(
1− ω

2T

)]
(1− ω)5+ bjω5

}
(16)

with the coefficientsa3 = az = 1, bz = 1
2; atr = a1 = a2 = 3

4, btr = 4
3. In the

absence of a constant magnetic field(1 = 0) the functionGj(ω) is Gz(ω) = Gtr(ω) =
i(2/3)(gµ0)

2(ω/c)5 to give the equation of motion

m
d2r

dt2
= −2(gµ0)

2

3c5

d5r

dt5
= Fµ (17)

for a quantum neutral particle with a massm and spin magnetic momentµ = gµ0σ in
a blackbody radiation field. Similar to the usual ‘electric’ forceFe(t) (1) of the radiation
reaction [1–5], inserting of the magnetic frictional forceFµ gives rise to runaway solutions
of equation (17). It should be stressed that the free blackbody radiation magnetic fieldB

(0)
k,j

does not contribute to the magnetic frictional force (17) if there is no external magnetic
field (B0 = 0). In this case the forceFµ (17) could be derived starting from a spinning
particle interacting with the magnetic self-field without introducing any fixed magnetic
field. Just as the classical ‘electric’ forceFe(t) (1) owes its existence to the radiation
reaction, so the magnetic frictional force (17) is only due to the magnetic radiation reaction
covered by the second term in equation (6). To obtain from equations (2) and (6) the
magnetic forceFµ(t) = ∇(µ · B(r, t)) surviving atB0 = 0 (and T = 0) there is a
need to replace a spin magnetic momentgµ0σ by a classical magnetic momentµ and to
average the forceFµ(t) = ∇(µ·B(r, t)) over an angular distribution of magnetic moments:
〈µiµj 〉ϑ = δijµ2

0. The factor 2/3 in equation (17) has its origin in this averaging which is
equivalent to averaging on the spin variables of the quantum particle.

As is shown in [16], the external magnetic field does not affect the electric radiation
frictional forceFe(t). By contrast, the constant magnetic fieldB0 causes a spin precession
with frequency1 = 2|gµ0B0| and thus modifies the interaction between the spin magnetic
moment and the blackbody radiation magnetic field. As a result, the functionGj(ω) (16) is
linear inω at ω � 1 and non-zero temperaturesT of the photon thermal bath. This is to
say that the non-relativistic particle with a magnetic moment is subjected to the magnetic
frictional force

(Fµ)j = −ζj (1, T ) drj (t)

dt
(18)

which is linearly proportional to the particle velocity, if there is a constantz-axially directed
magnetic fieldB0. Here the temperature-dependent, anisotropic coefficientsζj (1, T ) are

ζz(1, T ) = 8

15

(gµ0)
2

T

(
1

c

)5

sinh−1

(
1

T

)
= 4

3
ζtr(1, T ). (19)

For a charged particle with a magnetic moment, such as an electron, the longitudinal
mean velocity projectionVz is governed by the relaxation equation

dVz
dt
− 2 e2

3mc3

d2Vz

dt2
+ γzVz = 0 (20)

with the decrement

γz = 4

15

e2

h̄c

(
1

mc2

)3
12

h̄T
[e1/T − e−1/T ]−1. (21)
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This implies that the uniform motion of a spin-1
2 particle becomes impossible in the presence

of a blackbody radiation heat bath with non-zero temperature, and the magnetic frictional
force tends to bring such a quantum particle to rest with respect to a frame of blackbody
radiation if there is an external magnetic field.

4. Concluding remarks

In conclusion, it may be said that by virtue of the non-relativistic condition1 � mc2

the longitudinal damping of electrons in a constant magnetic field is difficult to detect
at laboratory test conditions (T < 103 K, B0 < 106 G). However, the results obtained
above have astrophysical applications. For instance, a non-relativistic electron moving in
the vicinity of a neutron star (B0 ∼ 109 G , T ∼ 106 K) [1, 10] decelerates for a time
γ−1
z ' 4.8 s, whereas the spin relaxation timeτ1 ' 1.66×10−6 s and the frequency of spin

precession is1/h̄ = 1.76× 1016 s−1 � T/h̄. In view of the dependence of the damping
rate on the particle massm, γz ∼ m−7, the relaxation of the neutron velocity under the same
conditions will be negligibly small. Meanwhile, the magnetic frictional forceFµ (3) can
exert some action on the motion of a neutron in an atomic nucleus resulting in the radiation
broadening of excited-state levels. By way of example, magnetic radiation damping of
neutron vibrations with the frequencyω0 is determined by the decrement

γµ = 2

3

(
g

2

)2 e2

h̄c

(
h̄ω0

mc2

)3

ω0 (22)

where g is g-factor of the neutron with a massm. With the proviso that the energy
h̄ω0 is of the order of the neutron binding energy in the nucleus (¯hω0 ' 8 MeV,
h̄ω0/mc

2 ' 0.85× 10−2), the radiation broadening is ¯hγµ ' 0.02 eV, and the lifetime
of the neutron excited state isτµ ∼ γ−1

µ ' 2.6 × 10−14 s which compares well with
the contribution of the quadrupole radiation [8, 9] of the nucleus. Note that the radiation
broadening of the energy levels of a charged bound particle will contain contributions both
from the magnetic frictional forceFµ (3) and the electric forceFe(t) (1) with small ratio
γµ/γe = (g/2)2(h̄ω0/mc

2)2.
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